Data-Dependent Sparsity for Subspace Clustering

نویسندگان

  • Bo Xin
  • Yizhou Wang
  • Wen Gao
  • David P. Wipf
چکیده

Subspace clustering is the process of assigning subspace memberships to a set of unlabeled data points assumed to have been drawn from the union of an unknown number of low-dimensional subspaces, possibly interlaced with outliers or other data corruptions. By exploiting the fact that each inlier point has a sparse representation with respect to a dictionary formed by all the other points, an `1 regularized sparse subspace clustering (SSC) method has recently shown state-of-the-art robustness and practical extensibility in a variety of applications. But there remain important lingering weaknesses. In particular, the `1 norm solution is highly sensitive, often in a detrimental direction, to the very types of data structures that motivate interest in subspace clustering to begin with, sometimes leading to poor segmentation accuracy. However, as an alternative source of sparsity, we argue that a certain data-dependent, non-convex penalty function can compensate for dictionary structure in a way that is especially germane to subspace clustering problems. For example, we demonstrate that this proposal displays a form of invariance to feature-space transformations and affine translations that commonly disrupt existing methods, and moreover, in important settings we reveal that its performance quality is lower bounded by the `1 solution. Finally, we provide empirical comparisons on popular benchmarks that corroborate our theoretical findings and demonstrate superior performance when compared to recent state-of-theart models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Subspace Clustering with Sparsity Prior

Subspace clustering aims to cluster unlabeled samples into multiple groups by implicitly seeking a subspace to fit each group. Most of existing methods are based on a shallow linear model, which may fail in handling data with nonlinear structure. In this paper, we propose a novel subspace clustering method – deeP subspAce clusteRing with sparsiTY prior (PARTY) – based on a new deep learning arc...

متن کامل

Multi-view low-rank sparse subspace clustering

Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a joint subspace representation by constructing affinity matrix shared among all views. Relyi...

متن کامل

Convex Subspace Representation Learning from Multi-View Data

Learning from multi-view data is important in many applications. In this paper, we propose a novel convex subspace representation learning method for unsupervised multi-view clustering. We first formulate the subspace learning with multiple views as a joint optimization problem with a common subspace representation matrix and a group sparsity inducing norm. By exploiting the properties of dual ...

متن کامل

A Shift Tolerant Dictionary Training Method

Traditional dictionary learning method work by vectorizing long signals, and training on the frames of the data, thereby restricting the learning to time-localized atoms. We study a shift-tolerant approach to learning dictionaries, whereby the features are learned by training on shifted versions of the signal of interest. We propose an optimized Subspace Clustering learning method to accommodat...

متن کامل

Subspace Clustering Reloaded: Sparse vs. Dense Representations

State-of-the-art methods for learning unions of subspaces from a collection of data leverage sparsity to form representations of each vector in the dataset with respect to the remaining vectors in the dataset. The resulting sparse representations can be used to form a subspace affinity matrix to cluster the data into their respective subspaces. While sparsity-driven methods for subspace cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017